
VMT Interface & Key Concepts

Velocity Mapping Toolbox (VMT)	Plotting Plot English Units	
Data Import Data Type ASCII Output (.bxt) Matlab Files (.mat) Disclaimer Help Save Data (.mat file) Output Tecplot (*.dat) file Output KMZ File (Google Earth) Vertical Offset (m)	Plan View Well Map Depth-Averaged Velocities Load Shoreline File Vector Scale Vector Spacing Add Background *Requires Mapping Toolbox Smoothing Window Size 1	Export
Graphics Export Figure 1 (Shiptracks) Figure 2 (Plan View) Figure 3 (Cross Section) Style Presentation Print Save Figures	Cross Sections Contour Variable Streamwise Velocity (u) Transverse Velocity (v) Vertical Velocity (w) Velocity Magnitude	<u> </u>
Processing Secondary Flow Definitions 1) Zero Net Cross-Stream Discharge Definition (zsd) 2) Rozovskii Definition (Roz) Manually Set Cross-Section Endpoints (User Input File Required) Correct for variations in streamwise depth (unit q continuity) Advanced Processing	Vector Scale Horiziontal Vector Spacing Vertical Vector Spacing Vertical Vector Spacing 1 Vertical Vector Spacing 1 Secondary Velocity (zsd) Vertical Vector Spacing 1 Secondary Flow Vector V Transverse Secondary (zsd)	'ariable
Bathymetry Doutput Multibeam Bathymetry Output Auxiliary Data Beam Angle (deg) Mag Var WSE (m) 0.0 0.0	Vertical Smoothing Window Vertical Smoothing Window 1 Secondary (Roz) Secon	

Overview of Data Processing

Preprocessing in WRII

- The user is responsible for QA/QC of their data in WRII prior to exporting ASCII Output files
- VMT currently does not include any major QA/QC routines (possible future addition)
- Pay particular attention to
 - Outliers
 - Near-shore velocity spikes
 - Missing data
 - GPS quality
 - Velocity reference

Preprocessing in WRII

Preprocess Data in WinRiverII & Generate ASCII Output

Export ASCII Output files in SI (metric) units with Backscatter data

VMT can plot in English units, but assumes all input data is in SI units

Saint	Clair_0_	000_AS	C.TXT	- Note	pad									×
File Edit	Format Vi	iew Help												
25	25	31 9	6 1	1) 1		20 21	410						L
8 / 22 9 -11.51	20 35 18 19.85	683 -1.00	3.00	-0.320 0.0	0.970 00 142) 5.3 2.00	0.00	12.08	2.	55	2.92	2.73	2.73	
0.00 43.00393	0.00	. 42191465	0.00	0.	.00	0.0	00							
0.0	0.0		0.0	5 -32/	-0.0		21.0		-0.0		17.0	0.93 2.	18	
96 cm BT	dB 0.43	0.319	-0.0	-77 2	_2 5	-0.7	82.2	85.5	83.8	82.9	100	2147483647		
0.93 1.18	77.95 54.11 47.41 69.18 61.44	187.31 158.28	20.0	-77.3 -50.3	-3.5 -9.3	-9.7 -14.6	83.3 85.0	85.0	85.9	83.7	100	2147483647		
1.43 1.68	47.41 69.18			-47.3 -66.8	-7.1 -5.3 -3.2		86 2	88.8 87.5 91.5 2555 2555 2555 2555 2555 2555 2555 2	87.0 87.9	86.2 82.3	100	2147483647 2147483647		
1.93	61.44	217.15	-37.1 -37.1 -6.0 -32768 -32768	-49.0	-3.2	2.4	86.6 87.6 86.3 255	88.5	88.1	84.2	100	2147483647		
2.18	53.01 -32768 -32768	186.51	-6.0	-52.7	3.7	3.5	86.3	91.5	87.2	85.9	100	2147483647 2147483647		
2.68	-32768	-32768	-32768	-32768	-32768	-32768	255	255	255	255	ő	2147483647		
2.93 3.18	-32768	-32768	-32768 -32768	-32768	-32768	-32768	255 255	255	255	255	0	2147483647 2147483647		
3.43	-32768	-32768	-32768	-32768	-32768	-32768	255	255	255	255	ő	2147483647		
3.68 3.93	-32768 -32768 -32768 -32768 -32768 -32768 -32768 -32768 -32768	-32768	-32768 -32768	-32768	-32768	-32768	255 255 255	255	255	255	0	2147483647 2147483647		
4.18 4.43	-32768	-32768	-32768 -32768	-32768	-32768	-32768	255 255	255	255	255	ŏ	2147483647		
4.43	-32768	-32768	-32768	-32768	-32768	-32768	255	255	255	255	0	2147483647 2147483647		
4.93	-32768	-32768	-32768 -32768 -32768	-32768	-32768	-32768	255 255 255	255	255	255	ő	2147483647		
5.18	-32768	-32768	-32768	-32768	-32768	-32768	255	255	255	255	0	2147483647		
5.43 5.68	-32768 -32768 -32768	-32768	-32768 -32768 -32768	-32768	-32768	-32768	255 255	255	255	255	0	2147483647 2147483647		
5.93	-32768	-32768	-32768	-32768	-32768	-32768	255	255	255	255	Ō	2147483647		
6.18	-32/68 -32768 -32768 -32768 -32768 -32768 -32768 -32768 -32768 -32768	-32768 -32768	-32768 -32768	-32768	-32/68	-32/68	255 255	255 255	255 255	255	0	2147483647 2147483647		
6.68	-32768	-32768	-32768	-32768	-32768	-32768	255 255	255	255	255	Ō	2147483647 2147483647		
6.68 6.93 7.18	-32/68 -32768	-32/68 -32768	-32768 -32768 -32768	-32768 -32768	-32768	-32/68	255	255 255	255 255	255 255	0	2147483647		
7.43	-32768	-32768	-32768 -32768	-32768	-32768	-32768	255 255	255	255	255	ō	2147483647		
7.68 7.93	-32/68 -32768	-32/68 -32768	-32768 -32768	-32768 -32768	-32768	-32768	255 255	255 255	255 255	255 255	0	2147483647		
8.18	-32768	-32768	-32768 -32768 -32768	-32768	-32768	-32768	255 255	255	255	255	ŏ	2147483647 2147483647		
8.43	-32/68 -32768	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	255 255	255 255	255 255	255	0	2147483647 2147483647		
8.68 8.93	-32768	-32768	-32768	-32768	-32768	-32768	255 255	255	255	255	ō	2147483647		
9.18 9.43	-32/68 -32768	-32/68 -32768	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	255 255	255 255	255	255	0	2147483647 2147483647		
9. 68	-32768	-32768	-32768 -32768 -32768 -32768 -32768	-32768	-32768	-32768	255 255	255	255	255	ŏ	2147483647		
9.93 10.18	-32768 -32768 -32768 -32768 -32768 -32768 -32768	-32768 -32768	-32768	-32768	-32768	-32768	255 255	255 255 255 255 255 255 255 255 255 255	255	84.2 255 255 255 255 255 255 255 255 255 2	0	2147483647 2147483647		
10.43	-32768 -32768 -32768	-32768	-32768 -32768 -32768	-32768	-32768	-32768	255	255	255	255	ŏ	21/7/826/7		
10.68 10.93	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	255 255	255 255	255 255	255	0	2147483647 2147483647		
11.18 11.43	-32768	-32768	-32768 -32768	-32768	-32768	-32768	255 255	255	255	255	ŏ	2147483647		
11.43	-32768 -32768 -32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	-32768 -32768	255 255	255 255 255 255 255 255 255 255	88.12 255555555555555555555555555555555555	255	0	2147483647 2147483647		
11.68 11.93 12.18	-32768	-32768	-32768	-32768	-32768	-32768	255	255	255	255 255 255 255 255 255 255	0	2147483647		
12.18	-32768 -32768	-32768	-32768	-32768	-32768	-32768	255 255	255	255	255	0	2147483647 2147483647		
12.43 12.68	-32768	-32768	-32768 -32768	-32768	-32768	-32768	255 255	255	255	255	0	2147483647		
12.93 13.18	-32768 -32768 -32768 -32768 -32768	-32768	-32768 -32768	-32768	-32768	-32768	255 255	255 255	255 255	255 255		2147483647 2147483647		
13.18	-32768 -32768	-32768	-32768 -32768	-32768	-32768	-32768	255	255	255	255	Ö	2147483647		
<														

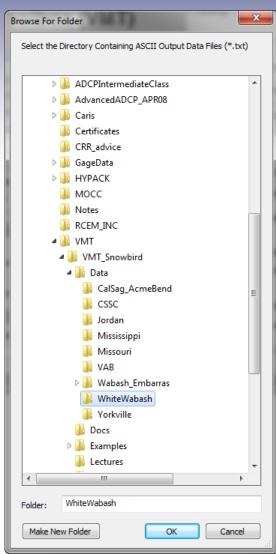
ASCII Output

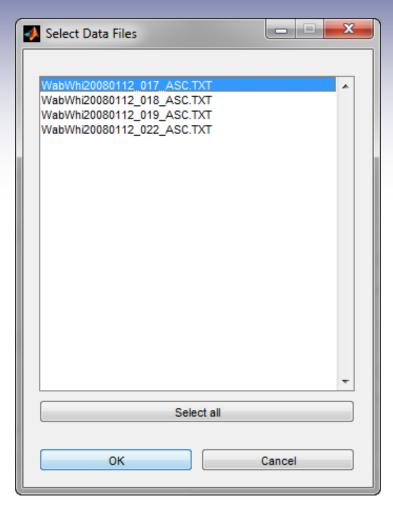
Preprocess Data in WinRiverII & Generate ASCII Output

First two rows are notes

```
Palmer Rapid
  WS WF Draft WN WP TPE WM
   25
       25
            13
                32
                         20
 Yymmddhhmmssss en #en Picth Roll Heading TW
 1 11 16 12 29 53 69 125
                           0.720 0.770 300.550 7.090
 Ew
            ud BTerr dpth Elv Delv Hdop/#Sat D1
                                                         D2
                                                              D3 D4
                                                  1.41
                                                         1.63
       5.40
            -0.20 0.00
                         0.00 275.67 0.00 12.06
                                                              1.54
 0.29
TEDist TETime TDTravelN TDTravelE TDMadeGood
 0.00
         0.00
                 0.00
                         0.00
                                 0.00
  Latitude Longitude NavBTew NavBTns TDT en
 45.3274678 -77.5151289 -1.50 -17.40
                                        0.0
Qmiddle Qtop Qbuttom QStShore DistStShore QEndShore DistEndShore EndDTL StDBL
 0.0
         0.0
                 0.0
                         0.0
                                10.0
                                         0.0
                                                 3.8 0.68 0.93
 #B unit ref int scl absr
 18 cm BT dB 0.45 0.511
 BDpth Velmag Veldir Velew Velns Vud Verr [Backscatter 1 2 3 4 ] %Good Qm^3
  0.68
        86.50
              163.82 24.1 -83.1 3.6 -28.8 66.4 66.9 63.7 66.4 100
                                                                   0.00
  0.93 118.65 136.85 81.1 -86.6 3.5 -24.1 72.6 70.8 66.7 80.8 100
                                                                   0.00
  1.18 -32768 -32768 -32768 -32768 -32768 -32768 102.4 83.8 74.7 104.2 0 2147483647
  1.43
       -32768 -32768 -32768 -32768 -32768
                                               255 115.8
                                                         255
                                                              255
                                                                   0 2147483647
  1.68
       -32768 -32768 -32768 -32768 -32768 -32768 255
                                                   255
                                                         255
                                                              255
                                                                   0 2147483647
```


Configure VMT Settings


Configure VMT

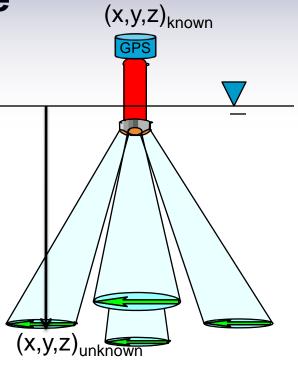

VMT		
Velocity Mapping Toolbox (VMT)	The state of the s	t English Units
V. 2.42 beta Data Import Data Type Save Data (.mat file) ASCII Output (.txt) Output Tecplot (*.dat) file Matlab Files (.mat) Vertical Offset (m) Disclaimer Help Load Data	Plan View Map Depth-Averaged Velocities Load Shoreline File Add Background *Requires Mapping Toolbox	Depth Range (m) to Vector Scale 1 Vector Spacing 1 Export
Graphics Export Figure 1 (Shiptracks) Figure 2 (Plan View) Figure 3 (Cross Section) Style Presentation Print Save Figures	Cross Sections Cross Section Contour Plot Vertical Exaggeration Plot Secondary Flow Vectors	Contour Variable Streamwise Velocity (u) Transverse Velocity (v) Vertical Velocity (w) Velocity Magnitude
Processing Secondary Flow Definitions 1) Zero Net Cross-Stream Discharge Definition (zsd) 2) Rozovskii Definition (Roz) Manually Set Cross-Section Endpoints (User Input File Required) Correct for variations in streamwise depth (unit q continuity) Advanced Processing	Vector Scale 0.2 Horiziontal Vector Spacing 1 Vertical Vector Spacing 1 Horizontal Smoothing Window 1	Primary Velocity (Roz) III Secondary Flow Vector Variable Transverse
Bathymetry Output Multibeam Bathymetry Output Auxiliary Data Deam Angle (deg) Mag Var WSE (m) 0.0 0.0	Vertical Smoothing Window Vertical Smoothing Window Include Vert. Vel. Comp. in Sec. Flow	Secondary (Roz) Secondary (Roz, Cross-Stream C Primary (Roz, Cross-Stream Com;

Load ASCII Data

VMT will group and average the selected transects (unless exporting bathymetry)

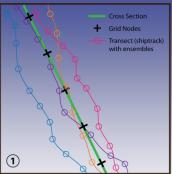
- Omit missing or bad velocity data (ASCII value = -32768)
- Filter out bad backscatter data (ASCII value = 255)
- Replace bad GPS with bottom track data
 - Missing GPS data is replaced with BT using last known position
 - Errors in moving bed conditions—Be Careful

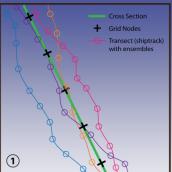
Future addition: QA/QC data

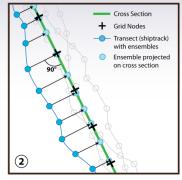

Beam Depth Computations

Process and Export Beam Depths*

*Stops Here if selected

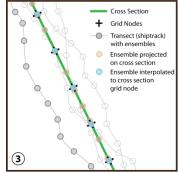

- Convert back to raw slant range
 - Remove draft from depth
 - Divide by cos(beam angle)
- Apply pitch, roll, heading
- Compute x, y, z for each beam
- Account for draft
- Translate to earth coordinates
- Apply water surface elevation (WSE)



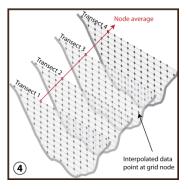

Averaging Multiple Transects

- Data mapped to a mean, linear cross section (required for secondary flow computations)
- If data along a curvilinear path is required, use ASCII2GIS utility

Step 2. Project transect data to the cross section plane using an orthogonal translation



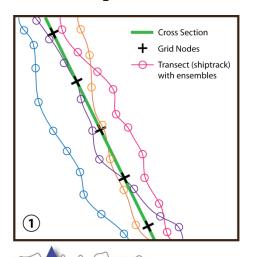
Step 1. Define the average cross section orientation and grid


1. Least-squares fit of data cloud 2. User-defined end points

Options:

Step 3. Interpolate projected data to the cross section grid for each transect (no interpolation in vertical is required when using a vertical grid defined by the bin size)

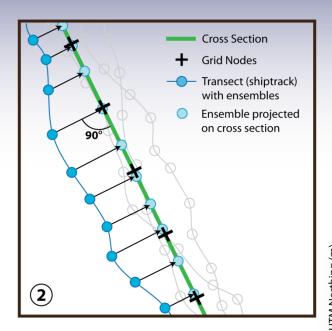
Step 4. Compute arithmetic average of all transects at each grid node for basic variables (e.g. velocity components)

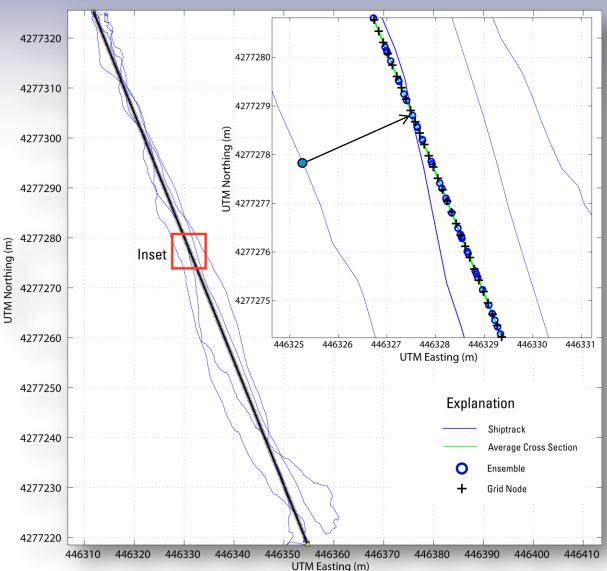


Mean Cross Section

Determine the Mean Cross Section

- Fits a line to all GPS points
- User can override with endpoint file

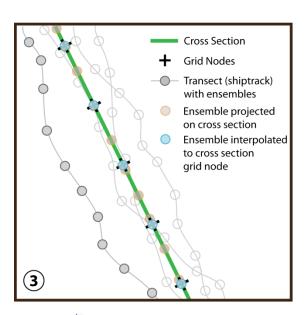




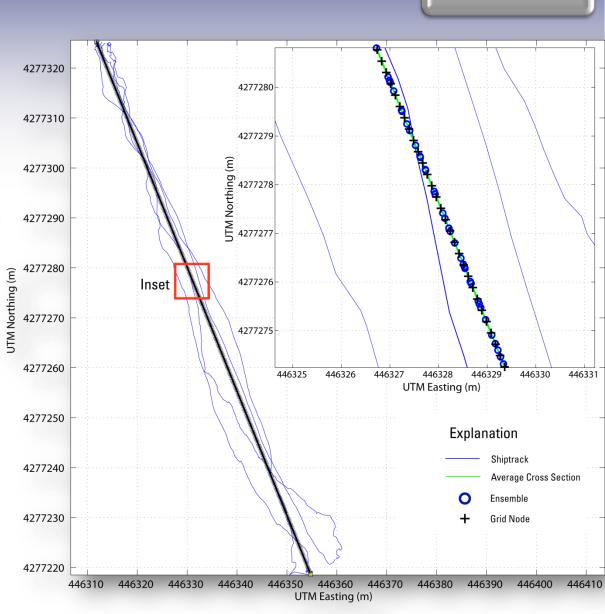
Manually Set Cross-Section Endpoints (User Input File Required)

Project Data to Mean XS

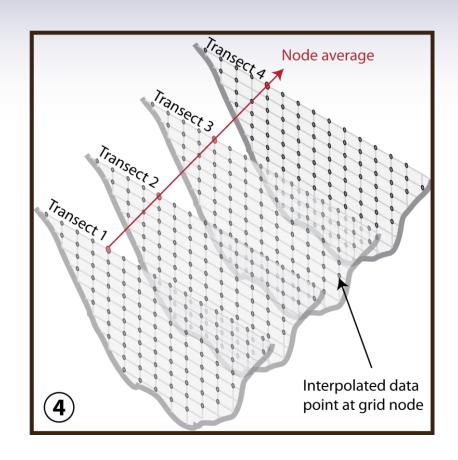
Map data to Mean Cross Section


Interpolate to Uniform Grid

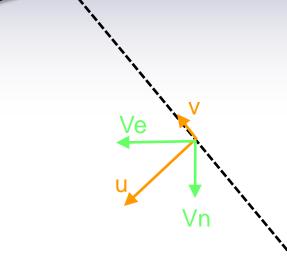
Interpolate the Transect Data to a Uniform Grid



Interpolates data to user specified grid


X grid node spacing user defined Z grid node spacing set by ADCP bins

- Averages basic variables at each node
 - Velocity Components (East, North, Vertical)
 - Backscatter & Depth
 - Velocity magnitude & direction are recomputed from averaged components



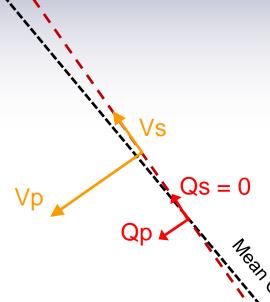
Streamwise and Transverse

Compute Streamwise and Transverse Velocities

- Streamwise defined perpendicular to mean cross section
- Transverse is parallel to mean cross section

u = Streamwise velocity

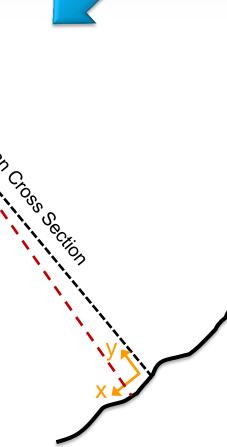
v = Transverse velocity


See Lane et al. 2001 (provided)

Primary and Secondary (ZSD)

Compute
Primary and
Secondary
Velocities

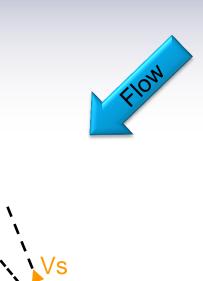
Zero Net Cross Stream
Discharge
Definition (ZSD)


- No net secondary discharge for entire cross section
- Finds components of velocity perpendicular (Vp) and parallel (Vs) to rotated cross section
- Better for bends (in general)

Vs = Secondary Velocity
Vp = Primary Velocity

See Lane et al. 2001 (provided)

Primary and Secondary (ROZ)


Compute
Primary and
Secondary
Velocities

Rozovskii Definition (ROZ)

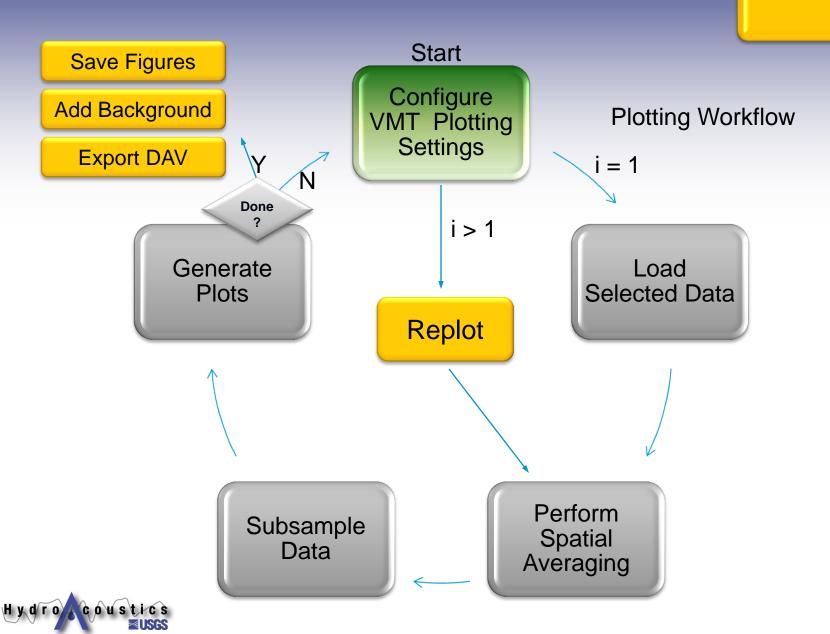
- No net secondary discharge for each profile (ensemble)
- Vs and Vp differ for each ensemble
- Recompute X and Y components of Vp and Vs
- Generally better for confluences and bifurcations

Vs = Secondary Velocity

Vp = Primary Velocity

Vpy

 $Qs_i = 0$

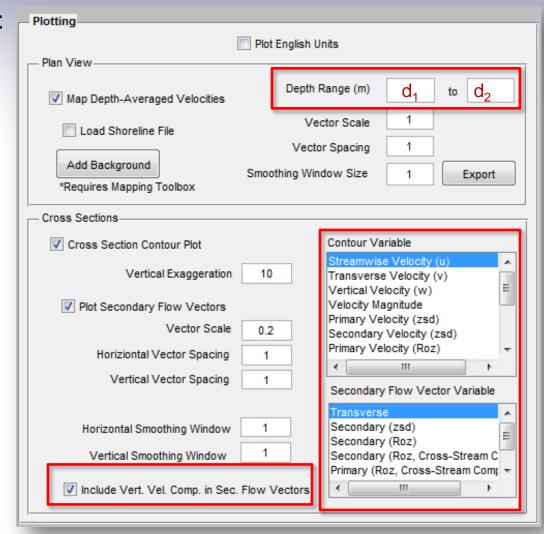

Vpx

See Lane et al. 2001 (provided)

Data Visualization

Visualize Data

▼ VMT		_ D X
Velocity Mapping Toolbox (VMT)	Plotting Plot English Units	. Il
V. 2.42 beta Data Import Data Type Save Data (.mat file) ASCII Output (.bxt) Output Tecplot (*.dat) file Matlab Files (.mat) Vertical Offset (m) Disclaimer Help Load Data Replot	Plan View Wap Depth-Averaged Velocities Load Shoreline File Vector Scale Vector Spacing Add Background *Requires Mapping Toolbox	to 1 1 1 Export
Graphics Export Style Figure 1 (Shiptracks) Figure 2 (Plan View) Figure 3 (Cross Section) Save Figures	Cross Sections Cross Section Contour Plot Vertical Exaggeration Plot Secondary Flow Vectors Contour Variab Streamwise Vertical Exaggeration Transverse Vertical Velocity Magnitudes Velocity Magnitudes	elocity (u) elocity (v) by (w) tude
Processing Secondary Flow Definitions Horizontal Grid Node Spacing (m) 1) Zero Net Cross-Stream Discharge Definition (zsd) 2) Rozovskii Definition (Roz) Manually Set Cross-Section Endpoints (User Input File Required) Correct for variations in streamwise depth (unit q continuity) Advanced Processing	Vertical Vector Spacing 1	ocity (zsd) y (Roz) w Vector Variable
Bathymetry Output Multibeam Bathymetry Output Auxiliary Data Beam Angle (deg) Mag Var WSE (m) 0.0 0.0	Vertical Smoothing Window 1 Secondary (Ro Secondary (Ro Primary (Roz,	

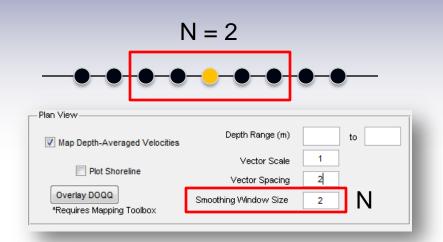

Configure VMT Plotting

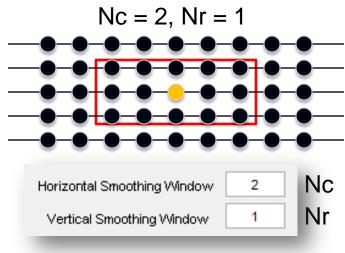
Configure VMT

 Plan view data can plot depth- or layeraveraged velocities

$$V_{LA} = \frac{1}{d_2 - d_1} \int_{d_1}^{d_2} V dz$$

- Contour variables & secondary flow variables from listboxes
- Can choose to include vertical velocity component in vectors
- Can plot in English units

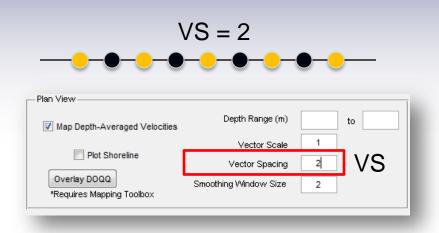


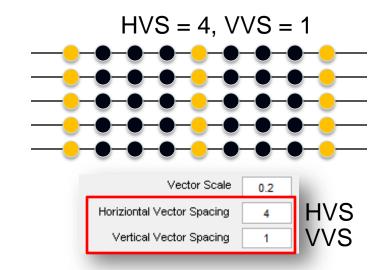

Spatial Averaging

Perform Spatial Averaging

Plan View

- 1-D Moving average
- Window size
 2*N + 1
- Ignores missing data
- 2-D contour plots
 - 2-D moving average
 - Window Size(2*Nr+1)-by-(2*Nc+1)
 - Ignores missing data

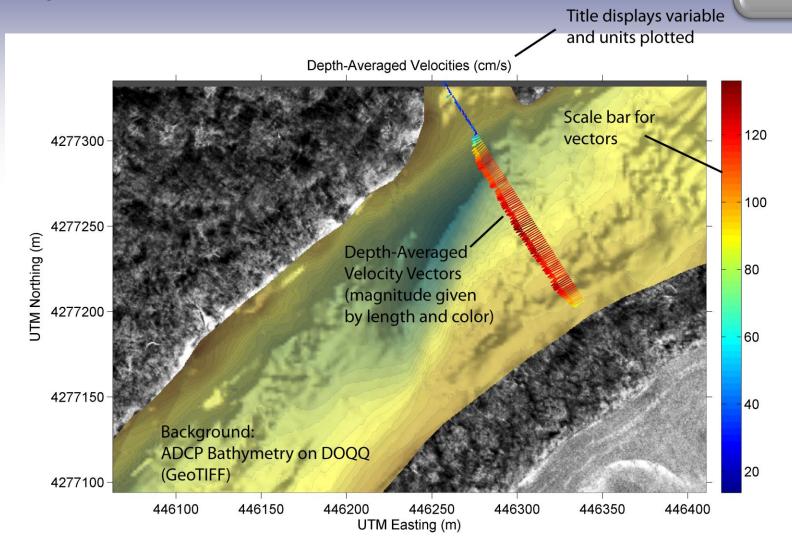

Units = HGNS & Bin Size



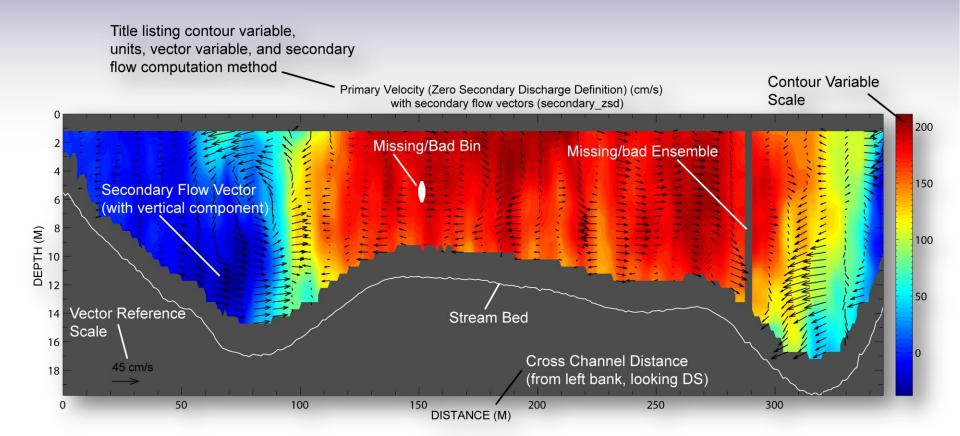
Subsample for Plotting

Subsample Data

- Use to improve clarity of plots
- Subsampling done after spatial averaging
- User-defined grid node spacing is HVS = 1 (i.e. plot all nodes)

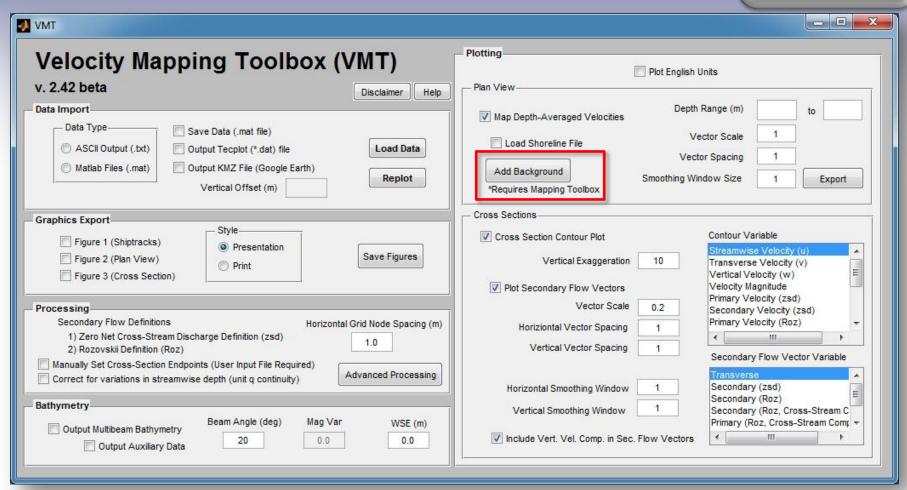


Generate Plots


Figure 2: Plan View Plot

Generate Plots

Figure 3: Contour Cross Section Plot


Configure
VMT Plotting
Settings

Velocity Mapping Toolbox (VMT)	Plot Eng	glish Units
V. 2.42 beta Disclaimer Help Data Import Data Type Save Data (.mat file)	Plan View	Vector Scale 1
Output (.txt) Output Tecplot (*.dat) file Output KMZ File (Google Earth) Vertical Offset (m)	Add Background	Vector Spacing 1 g Window Size 1 Export
Graphics Export Figure 1 (Shiptracks) Figure 2 (Plan View) Figure 3 (Cross Section) Style Presentation Presentation Print	Cross Sections Cross Section Contour Plot Vertical Exaggeration 10 Plot Secondary Flow Vectors	Contour Variable Streamwise Velocity (u) Transverse Velocity (v) Vertical Velocity (w) Velocity Magnitude
Processing Secondary Flow Definitions Horizontal Grid Node Spacing (m) 1) Zero Net Cross-Stream Discharge Definition (zsd) 2) Rozovskii Definition (Roz) Manually Set Cross-Section Endpoints (User Input File Required) Correct for variations in streamwise depth (unit q continuity) Advanced Processing	Vector Scale 0.2 Horiziontal Vector Spacing 1 Vertical Vector Spacing 1 Horizontal Smoothing Window 1	Primary Velocity (zsd) Secondary Velocity (zsd) Primary Velocity (Roz) Secondary Flow Vector Variable Transverse Secondary (zsd)
Bathymetry Output Multibeam Bathymetry Output Auxiliary Data Beam Angle (deg) Mag Var WSE (m) 0.0 0.0	Vertical Smoothing Window 1 Vertical Smoothing Window 1 Include Vert. Vel. Comp. in Sec. Flow Vector	Secondary (Roz) Secondary (Roz, Cross-Stream C Primary (Roz, Cross-Stream Com;

Add Background

Configure
VMT Plotting
Settings

Background Requirements:

- Coordinate system: UTM (WGS84; in meters)
- GeoTIFF, Shapefile, TIFF/JPEG/PNG (with a world file), ARC ASCII GRID, or SDTS raster.
- Mapping toolbox required for Matlab version

Export DAV

Configure VMT Plotting Settings

Velocity Mapping Toolbox (VMT)	Plotting Plotting Plotting	ot English Units	
Data Import Data Type Save Data (.mat file) ASCII Output (.bxt) Matlab Files (.mat) Output Tecplot (*.dat) file Output KMZ File (Google Earth) Vertical Offset (m)	Plan View Map Depth-Averaged Velocities Load Shoreline File Add Background *Requires Mapping Toolbox	Depth Range (m) Vector Scale Vector Spacing 1 pothing Window Size 1	to
Graphics Export Figure 1 (Shiptracks) Figure 2 (Plan View) Figure 3 (Cross Section) Style Presentation Print Save Figures	Cross Sections Cross Section Contour Plot Vertical Exaggeration Plot Secondary Flow Vectors	Contour Variable Streamwise Velocity (u Transverse Velocity (v Vertical Velocity (w) Velocity Magnitude	
Processing Secondary Flow Definitions 1) Zero Net Cross-Stream Discharge Definition (zsd) 2) Rozovskii Definition (Roz) Manually Set Cross-Section Endpoints (User Input File Required) Correct for variations in streamwise depth (unit q continuity) Horizontal Grid Node Spacing (m) 1.0 Advanced Processing	Vector Scale 0. Horiziontal Vector Spacing Vertical Vector Spacing Horizontal Smoothing Window	Primary Velocity (zsd) Secondary Velocity (zsd) Primary Velocity (Roz) I Secondary Flow Vector Transverse Secondary (zsd)	,
Output Multibeam Bathymetry Output Auxiliary Data Beam Angle (deg) Mag Var WSE (m) 0.0 0.0	Vertical Smoothing Window ✓ Include Vert. Vel. Comp. in Sec. Flow	Secondary (Roz) Secondary (Roz, Cross Primary (Roz, Cross-Si	

Currently only exports *.ANV vector file

Save Figures

Configure
VMT Plotting
Settings

Velocity Mapping Toolbox (VMT)	Plotting Plot English Units			
Disclaimer Help Data Import Data Type ASCII Output (.txt) Matlab Files (.mat) Save Data (.mat file) Output Tecplot (*.dat) file Output KMZ File (Google Earth) Vertical Offset (m)	✓ Map Depth-Averaged Velocities □ Load Shoreline File Ve	Range (m) to ctor Scale 1 cor Spacing 1 cor		
Figure 1 (Shiptracks) Figure 2 (Plan View) Figure 3 (Cross Section) Style Presentation Print Save Figures	Cross Sections Cross Section Contour Plot Vertical Exaggeration 10 Plot Secondary Flow Vectors	Contour Variable Streamwise Velocity (u) Transverse Velocity (v) Vertical Velocity (w) Velocity Magnitude		
Processing Secondary Flow Definitions Horizontal Grid Node Spacing (m) 1) Zero Net Cross-Stream Discharge Definition (zsd) 2) Rozovskii Definition (Roz) Manually Set Cross-Section Endpoints (User Input File Required) Correct for variations in streamwise depth (unit q continuity) Advanced Processing	Vector Scale 0.2 Horiziontal Vector Spacing 1 Vertical Vector Spacing 1 Horizontal Smoothing Window 1	Primary Velocity (zsd) Secondary Velocity (zsd) Primary Velocity (Roz) Secondary Flow Vector Variable Transverse Secondary (zsd)		
Output Multibeam Bathymetry Beam Angle (deg) Mag Var WSE (m) Output Auxiliary Data 0.0 0.0	Vertical Smoothing Window 1 ✓ Include Vert. Vel. Comp. in Sec. Flow Vectors	Secondary (Roz) Secondary (Roz, Cross-Stream C Primary (Roz, Cross-Stream Com;		

Prompts user for choice of EPS or PNG format

Important Tips

- Wait until you are completely satisfied with your plots (vectors, contours, etc.) before:
 - Adding a background
 - Exporting vectors
 - Saving figures
- Resize your figures appropriately before saving
- Users can also export figures in the figure window using a variety of settings and options

Overview of Output Files

Matlab data files (*.mat):

 Files contain Matlab data structures with the raw ADCP data, intermediate variables used in computations, and final processed and averaged data.

Tecplot Data files (*_TECOUT.dat):

- Files contain processed and averaged ADCP data formatted for direct import into Tecplot.
- Average XS bathymetry data are also exported into the *_TECOUT_XSBathy.dat file.

iRIC Vector Data Files (*.anv):

- Vector files for input into the iRIC modeling suite.
- The vector files contain x, y, z, vx, and vy values in each line and separated by spaces. Units are MKS, UTM WGS84.

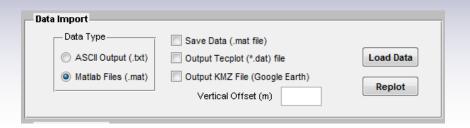
See VMT user guide for more detailed information

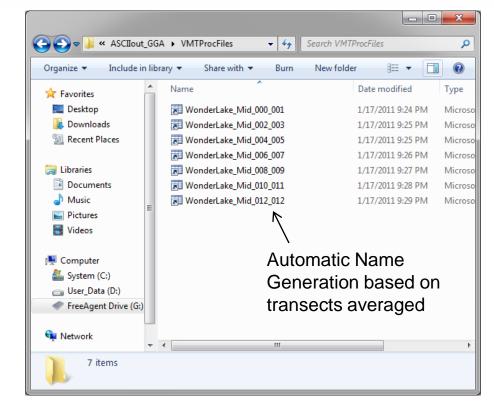
Multibeam XYZ Bathymetry Files (*_mbxyz.csv):

- These files contain the bathymetry data from the four individual beams of the ADCP, corrected for heading, pitch, and roll
- CSV format for easy import into ArcGIS
- Can include ancillary data (time stamp, heading, pitch, roll, etc.)

Google Earth files (*.KML and *.KMZ):

- These files are generated to allow the user to display the transect shiptracks (*.kml) and mean cross sections (*.kmz) in Google Earth
- Shiptrack KMLs are generated using ASCII2KML utility

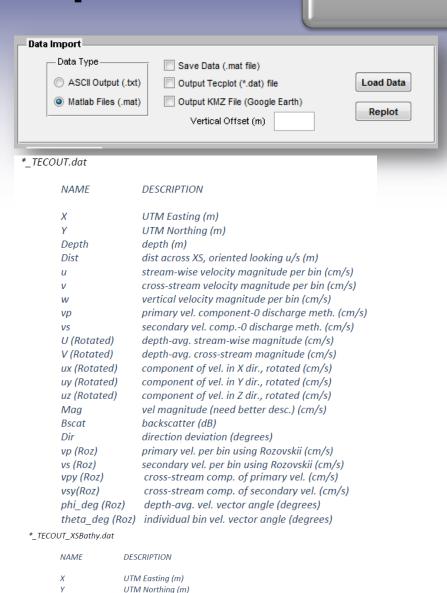

GIS Compatible ASCII Files (*_GIS.csv):


- These files contain georeferenced depth- or layer-averaged data for every ensemble along the curvilinear shiptrack
- Exported using ASCII2GIS utility

Save/Export Processed Data

Save Processed Data

- Will save *.mat (Matlab data file) if selected
- Creates'VMTProcFiles'directory inmeasurementdirectory
- User can reload processed file at a later time (faster)


Tecplot Export Option

Export Tecplot
Data File

- Processed data saved to *.dat file
- Saves all plot variables (velocity components, backscatter, flow angles, etc.) and bathymetry of MCS
- Saved before any spatial averaging
 - Smoothing in plot routines
- Saved to

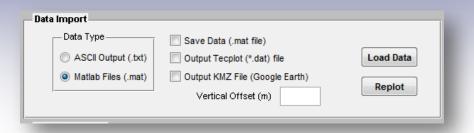
 'VMTProcFiles'

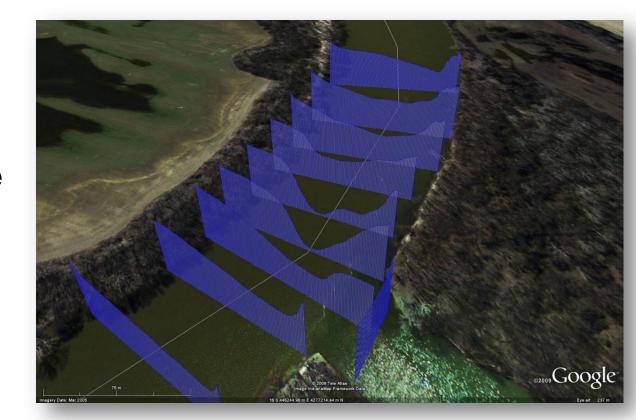
 directory

Bed depth (m)

BedElev

dist across XS, oriented looking u/s (m)


Bed Elevation (m) (Only accurate if user entered value in VMT GUI)


KMZ Export Option

Export KMZ File

- Saves mean cross section bathymetry to Google Earth KMZ file
- 3-D 'slice' through river bed elevated above the image plane
- Elevated above plane by 'vertical offset'
- Saved to 'VMTProcFiles' directory

Advanced Processing

Currently under development/evaluation:

- Computation of shear velocity and bed shear stress
- Estimation of the longitudinal dispersion coefficient from transverse velocity profile
- Vorticity computation
- Interpolation between transects
- Stationary (at-a-point) processing
- SSC calibration/computation tool
 - see Boldt et al. in HMEM proceedings (2.2.2 ADCPs and Sediment)
 - Several talks are included in references

Questions?

